题目内容
如图,正方形与梯形所在的平面互相垂直,,∥,,,为的中点.
(1)求证:∥平面;
(2)求证:平面平面;
(3)求平面与平面所成锐二面角的余弦值.
(1)求证:∥平面;
(2)求证:平面平面;
(3)求平面与平面所成锐二面角的余弦值.
(1)证明过程详见解析;(2)证明过程详见解析;(3).
试题分析:本题主要考查中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,作出辅助线MN,N为中点,在中,利用中位线得到,且,结合已知条件,可证出四边形ABMN为平行四边形,所以,利用线面平行的判定,得∥平面;第二问,利用面面垂直的性质,判断面,再利用已知的边长,可证出,则利用线面垂直的判定得平面BDE,再利用面面垂直的判定得平面平面;第三问,可以利用传统几何法证明二面角的平面角,也可以利用向量法建立空间直角坐标系,求出平面BEC和平面ADEF的法向量,利用夹角公式计算即可.
(1)证明:取中点,连结.
在△中,
分别为的中点,所以∥,且
.由已知∥,,所以
∥,且.所以四边形为平行四边形,
所以∥.
又因为平面,且平面,
所以∥平面. 4分
(2)证明:在正方形中,.又因为
平面平面,且平面平面,
所以平面.所以. 6分
在直角梯形中,,,可得.
在△中,,所以. 7分
所以平面. 8分
又因为平面,所以平面平面. 9分
(3)(方法一)延长和交于.
在平面内过作于,连结.由平面平面,
∥,,平面平面=,
得,于是.
又,平面,所以,
于是就是平面与平面所成锐二面角的
平面角. 12分
由,得.
又,于是有.
在中,.
所以平面与平面所成锐二面角的余弦值为. 14分
(方法二)由(2)知平面,且.
以为原点,所在直线分别为轴,建立空间直角坐标系.
易得 .平面的一个法向量为.设为平面的一个法向量,因为,所以,令,得.
所以为平面的一个法向量. 12分
设平面与平面所成锐二面角为.
则.所以平面与平面所成锐二面角的余弦值为. 14分
练习册系列答案
相关题目