题目内容
如图,在四棱锥
中,底面
是直角梯形,
,
,
平面
平面
,若![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411091522.png)
,
,
,
,且
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240504112157556.png)
(1)求证:
平面
;
(2)设平面
与平面
所成二面角的大小为
,求
的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411013600.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411013531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411028602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411044532.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411059476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411013531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411091522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411106506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411106619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411122471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411153677.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411169704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240504112157556.png)
(1)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411231395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411013531.png)
(2)设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411278452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411293448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411309718.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411325489.png)
(1)参考解析;(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411340421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411340421.png)
试题分析:(1)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411106619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411169704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411418572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411122471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411153677.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240504114961569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411512695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411543510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411059476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411013531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411590492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411013531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411621426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411231395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411013531.png)
(2)由题意可得建立空间坐标系,写出相应点的坐标,平面PAD的法向量易得,用待定系数写出平面PBC的法向量,根据两向量的法向量夹角的余弦值,求出二面角的余弦值.
(1)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411169704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411683625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411699569.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411746518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240504117931166.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240504118391642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411855571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411902726.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411933558.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411949222.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411059476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411013531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411995507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412027624.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412042409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411278452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412073407.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050411013531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240504121366037.png)
(2)如图,过
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412183292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412214588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412214398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412229318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412292376.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412323388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412339362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412354291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412370383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412323388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412339362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412417405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412432514.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412448526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412495943.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240504125731008.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412604869.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412619375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412651164.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412682663.png)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412697439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412713649.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412760763.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412775168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240504128071213.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412853774.png)
取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412869323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412900634.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412916705.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412697439.png)
量. 11分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412947442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412963439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050413009732.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050412963439.png)
一个法向量.
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240504130561165.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240504131031090.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240504131501289.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目