题目内容

4.已知a>0,b>0,ab=8,则当a的值为4时,log2a•log2(2b)取得最大值.

分析 由条件可得a>1,再利用基本不等式,求得当a=4时,log2a•log2(2b)取得最大值,从而得出结论.

解答 解:由题意可得当log2a•log2(2b)最大时,log2a和log2(2b)都是正数,
故有a>1.
再利用基本不等式可得log2a•log2(2b)≤${[\frac{{log}_{2}a{+log}_{2}(2b)}{2}]}^{2}$=${[\frac{{log}_{2}(2ab)}{2}]}^{2}$=${[\frac{{log}_{2}16}{2}]}^{2}$=4,
当且仅当a=2b=4时,取等号,即当a=4时,log2a•log2(2b)取得最大值,
故答案为:4.

点评 本题主要考查基本不等式的应用,注意检查等号成立条件以及不等式的使用条件,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网