题目内容
【题目】设函数,其中[x]表示不超过的最大整数,如[-1,2]=-2,[1,2]=1,[1]=1,若f(x)=kx+k有三个不同的根,则实数k的取值范围是( )
A.
B.
C.
D.
【答案】D
【解析】若f(x)=kx+k有三个不同的根,则函数y=f(x)的图象与y=kx+k的图象有三个交点,我们画出函数的图象,结合y=kx+k的图象恒过(-1,0)点,数形结合,易分析出k的取值范围.
∵
∴函数的图象如下图所示:
∵y=kx+k=k(x+1),故函数图象一定过(-1,0)点
若f(x)=kx+k有三个不同的根,
则y=kx+k与y=f(x)的图象有三个交点
当y=kx+k过(2,1)点是k= ,
当y=kx+k过(3,1)点是k= ,
故f(x)=kx+k有三个不同的根,则实数k的取值范围是[ , )
故选D
练习册系列答案
相关题目