题目内容

【题目】已知等差数列{an}的前n(n∈N*)项和为Sn , a3=3,且λSn=anan+1 , 在等比数列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求数列{an}及{bn}的通项公式;
(Ⅱ)设数列{cn}的前n(n∈N*)项和为Tn , 且 ,求Tn

【答案】解:(Ⅰ)∵λSn=anan+1 , a3=3,∴λa1=a1a2 , 且λ(a1+a2)=a2a3 , ∴a2=λ,a1+a2=a3=3,①
∵数列{an}是等差数列,∴a1+a3=2a2 , 即2a2﹣a1=3,②
由①②得a1=1,a2=2,∴an=n,λ=2,
∴b1=4,b3=16,∴{bn}的公比q= =±2,
或bn=(﹣2)n+1
(Ⅱ)由(I)知 ,∴ =
∴Tn=
=1+
=
【解析】(I)分别令n=1,2列方程,再根据等差数列的性质即可求出a1 , a2得出an , 计算b1 , b3得出公比得出bn;(II)求出cn , 根据裂项法计算Tn

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网