题目内容

已知抛物线C:y2=2px(p>0)上一动点M,设M到抛物线C外一定点A(6,12)的距离为d1,M到定直线l:x=-p的距离为d2,若d1+d2的最小值为14,则抛物线C的方程为______.
由于抛物线C:y2=2px(p>0)上一动点M,如图示,
则M到抛物线的焦点F(
p
2
,0)的距离等于M到准线:x=-
1
2
p的距离,
又由于M到定直线l:x=-p的距离为M到准线:x=-
1
2
p的距离与
p
2
的和,
则d2=MQ=MF+
p
2

故d1+d2=MA+MF+
p
2
的最小值为14,
由图知,当M与P′重合时,取最小值14,
则14=AF+
p
2
=
(6-
p
2
)2+122
+
p
2
,解得p=2,
则抛物线C的方程为y2=4x.
故答案为:y2=4x.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网