题目内容

已知抛物线y=x2上有一定点A(-1,1)和两动点P、Q,当PA⊥PQ时,点Q的横坐标取值范围是(  )
A.(-∞,-3]B.[1,+∞)C.[-3,1]D.(-∞,-3]∪[1,+∞)
设P(a,b) Q(x,y),
AP
=(a+1,b-1),
PQ
=(x-a,y-b)
由垂直关系得(a+1)(x-a)+(b-1)(y-b)=0
又P、Q在抛物线上即a2=b,x2=y,
故(a+1)(x-a)+(a2-1)(x2-a2)=0
整理得(a+1)(x-a)[1+(a-1)(x+a)]=0
而P和Q和A三点不重合即a≠-1 x≠a
所以式子可化为1+(a-1)(x+a)=0
整理得 a2+(x-1)a+1-x=0
由题意可知,此关于a的方程有实数解 即判别式△≥0
得(x-1)2-4(1-x)≥0解得x≤-3或x≥1
点Q的横坐标取值范围是(-∞,-3]∪[1,+∞)
故选:D
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网