搜索
题目内容
已知函数
,
是它的导函数,则
。
试题答案
相关练习册答案
试题分析:因为函数
,所以
因此
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
设函数
,曲线
在点
处的切线为
.
(1)求
;
(2)证明:
.
设函数
有两个极值点
,且
.
(1)求
的取值范围,并讨论
的单调性;
(2)证明:
.
已知函数f(x)=
e
x
,a,b
R,且a>0.
⑴若a=2,b=1,求函数f(x)的极值;
⑵设g(x)=a(x-1)e
x
-f(x).
①当a=1时,对任意x
(0,+∞),都有g(x)≥1成立,求b的最大值;
②设g′(x)为g(x)的导函数.若存在x>1,使g(x)+g′(x)=0成立,求
的取值范围.
某城市为了解决人民路拥挤现象,政府决定建设高架公路,该高架公路两端的桥墩及引桥已建好,这两桥墩相距1280米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为32万元,距离为
米的相邻两墩之间的桥面工程费用为
万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为
万元。(1)试写出
关于
的函数关系式;(2)政府至少还需投入多少万元资金才能启动此工程建设,此时新建桥墩有多少个?
函数
对于
总有
0 成立,则
=
.
已知函数f(x)=ax
2
-(a+2)x+ln x.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围;
(3)若对任意x
1
,x
2
∈(0,+∞),x
1
<x
2
,且f(x
1
)+2x
1
<f(x
2
)+2x
2
恒成立,求a的取值范围.
已知
为常数,且
,函数
,
(
是自然对数的底数).
(1)求实数
的值;
(2)求函数
的单调区间;
(3)当
时,是否同时存在实数
和
(
),使得对每一个
,直线
与曲线
都有公共点?若存在,求出最小的实数
和最大的实数
;若不存在,说明理由.
设函数
,其中
.
(1)讨论
在其定义域上的单调性;
(2)当
时,求
取得最大值和最小值时的
的值.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总