题目内容
如图,已知高为3的棱柱ABC-A1B1C1的底面是边长为1的正三角形,求三棱锥B1-ABC的体积。
解:三棱锥B1-ABC的高h=3,底面积S=S△ABC=×12=,则=Sh=××3=.
解析
已知四边形满足∥,,是的中点,将沿着翻折成,使面面,为的中点. (Ⅰ)求四棱的体积;(Ⅱ)证明:∥面;(Ⅲ)求面与面所成二面角的余弦值.
如图, 在空间四边形SABC中, 平面ABC, , 于N, 于M.求证:①AN^BC; ②平面SAC^平面ANM
如图,平面⊥平面,为正方形, ,且分别是线段的中点.(Ⅰ)求证://平面; (Ⅱ)求异面直线与所成角的余弦值.
如图,已知圆锥的轴截面ABC是边长为2的正三角形,O是底面圆心.(Ⅰ)求圆锥的表面积;(Ⅱ)经过圆锥的高AO的中点O¢作平行于圆锥底面的截面,求截得的圆台的体积.
(本小题满分12分)如图所示的几何体是由以等边三角形为底面的棱柱被平面所截而得,已知平面,,,,为的中点,面.(Ⅰ)求的长;(Ⅱ)求证:面面;(Ⅲ)求平面与平面相交所成锐角二面角的余弦值.
如右图所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为,设这条最短路线与CC1的交点为N.求:(1)该三棱柱的侧面展开图的对角线长;(2)PC和NC的长.
(本题满分12分)如图,在底面是直角梯形的四棱锥S-ABCD中,(1)求四棱锥S-ABCD的体积;(2)求证:
(本题满分12分)右图为一简单组合体,其底面ABCD为正方形,平面, ,且="2" .(1)答题卡指定的方框内画出该几何体的三视图;(2)求四棱锥B-CEPD的体积.