题目内容

15.若圆C:(x+a)2+y2=4上恰有两个点到原点的距离为1,则实数a的取值范围是0<a<2$\sqrt{2}$或-2$\sqrt{2}$<a<0.

分析 根据题意知:圆(x+a)2+y2=4和以原点为圆心,1为半径的圆x2+y2=1相交,因此两圆圆心距大于两圆半径之差、小于两圆半径之和,列出不等式,解此不等式即可.

解答 解:圆(x+a)2+y2=4和圆x2+y2=1相交,两圆圆心距d=$\sqrt{{a}^{2}+1}$,
∴2-1<$\sqrt{{a}^{2}+1}$<2+1,
∴0<a<2$\sqrt{2}$或-2$\sqrt{2}$<a<0.
故答案为:0<a<2$\sqrt{2}$或-2$\sqrt{2}$<a<0.

点评 本题体现了转化的数学思想,解题的关键在于将问题转化为:圆(x+a)2+y2=4和圆x2+y2=1相交,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网