题目内容
【题目】等差数列{an}的前n项和为Sn= (3n+5),正项等比数列{bn}中,b2=4,b1b7=256.
(1)求{an}与{bn}的通项公式;
(2)设cn=anbn , 求{cn}的前n项和Tn .
【答案】
(1)解:∵Sn= (3n+5),
∴当n≥2时,an=Sn﹣Sn﹣1= (3n+5)﹣ =3n+1,
当n=1时,a1= (3×1+5)=4也适合上式,
∴an=3n+1.
在正项等比数列{bn}中,b2=4,b1b7= =256,
∴b4=16,
∴其公比q2= =4,又q>0,
∴q=2,
∴bn=b2qn﹣2﹣2=4×2n﹣2=2n.
(2)解:∵cn=anbn=(3n+1)2n,
∴Tn=a1b1+a2b2+…+anbn=4×2+(3×2+1)×22+…+(3n+1)2n,①
2Tn=4×22+(3×2+1)×23+…+[3(n﹣1)+1)]2n+(3n+1)2n+1,②
①﹣②得:﹣Tn=4×2+3×22+…+3×2n﹣(3n+1)2n+1
=3(2+22+…+2n)+2﹣(3n+1)2n+1
=3× +2﹣(3n+1)2n+1
=(3﹣3n﹣1)2n+1﹣4.
∴Tn=(3n﹣2)2n+1+4.
【解析】(1)由Sn= (3n+5)可知,n≥2时,an=Sn﹣Sn﹣1=3n+1,验证n=1时的情况即可求得数列{an}的通项公式;在正项等比数列{bn}中,由b2=4,b1b7= =256,可求得其公比q=2,从而可得数列{bn}的通项公式;求{an}与{bn的通项公式;(2)由cn=anbn=(3n+1)2n , 可知Tn=a1b1+a2b2+…+anbn=4×2+(3×2+1)×22+…+(3n+1)2n , 利用错位相减法即可求得数列{cn}的前n项和Tn .
【考点精析】掌握数列的前n项和是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系.