题目内容
如图,D,E分别为三棱锥P—ABC的棱AP、AB上的点,且AD:DP=AE:EB=1:3.求证:DE//平面PBC
证明略
解析
(13分)如图,四棱锥的底面是正方形,,点在棱上.(Ⅰ)求证:平面; (Ⅱ)当且为的中点时,求四面体体积.
养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M,高4M。养路处拟建一个更大的圆锥形仓库,以存放更多食盐。现有两种方案:一是新建的仓库的底面直径比原来大4M(高不变);二是高度增加4M(底面直径不变)。(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些,说明理由.
本小题满分14分正方形的边长为1,分别取边的中点,连结, 以为折痕,折叠这个正方形,使点重合于一点,得到一 个四面体,如下图所示。
(.(本小题满分12分)设某几何体及其三视图:如图(尺寸的长度单位:m)(1)O为AC的中点,证明:BO⊥平面APC;(2)求该几何体的体积;(3)求点A到面PBC的距离.
一个多面体的三视图和直观图如图所示,其中、分别是、的中点,是上的一动点。(1)求证;(2)当点落在什么位置时,平行于平面?(3)求三棱锥的体积。
下图是一几何体的直观图、正(主)视图、侧(左)视图、俯视图(1)若为的中点,求证:平面;(2)求平面与平面所成的二面角(锐角)的余弦值.
(本题满分14分) 某甜品店制作蛋筒冰淇淋,其上半部分呈半球形,下半部分呈圆锥形(如图)。现把半径为10cm的圆形蛋皮分成5个扇形,用一个扇形蛋皮围成锥形侧面(蛋皮厚度忽略不计),求该蛋筒冰淇淋的表面积和体积(精确到0.01)
(本小题12分)如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的大小;(III)求点E到平面ACD的距离。