题目内容
(13分)如图,四棱锥的底面是正方形,,点在棱上.(Ⅰ)求证:平面; (Ⅱ)当且为的中点时,求四面体体积.
(Ⅰ)见解析;(Ⅱ)四面体体积为。
解析
(本小题满分12分)如图,在四棱锥中,底面是矩形,,、分别为线段、的中点,⊥底面.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面^平面;(Ⅲ)若,求三棱锥的体积.
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.(1)求证:AG∥平面PEC;(2)求AE的长;(3)求二面角E—PC—A的正弦值.(本题满分14分)
在四棱锥中,⊥平面,,,,,是的中点.(Ⅰ)证明:⊥平面;(Ⅱ)若直线与平面所成的角和与平面所成的角相等,求四棱锥的体积.
(本小题满分14分)正方体,,E为棱的中点.(Ⅰ) 求证:; (Ⅱ) 求证:平面;(Ⅲ)求三棱锥的体积.
(本小题共2小题,每小题6分,满分12分)(1)已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图如图所示,其中,,,求直角梯形以BC为旋转轴旋转一周形成的几何体的表面积。(2)定线段AB所在的直线与定平面α相交,P为直线AB外的一点,且P不在α内,若直线AP、BP与α分别交于C、D点,求证:不论P在什么位置,直线CD必过一定点.
如图所示的长方体中,底面是边长为的正方形,为与的交点,,是线段的中点.(1)求证:平面;(2)求三棱锥的体积
、如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.
如图,D,E分别为三棱锥P—ABC的棱AP、AB上的点,且AD:DP=AE:EB=1:3.求证:DE//平面PBC