题目内容
【题目】已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则的值为( )
A. - B. -2
C. -2或- D. 2或-
【答案】A
【解析】∵f(x)=x3+ax2+bx﹣a2﹣7a,
∴f′(x)=3x2+2ax+b,
又f(x)=x3+ax2+bx﹣a2﹣7a在x=1处取得极大值10,
∴f′(1)=3+2a+b=0,f(1)=1+a+b﹣a2﹣7a=10,
∴a2+8a+12=0,
∴a=﹣2,b=1或a=﹣6,b=9.
当a=﹣2,b=1时,f′(x)=3x2﹣4x+1=(3x﹣1)(x﹣1),
当<x<1时,f′(x)<0,当x>1时,f′(x)>0,
∴f(x)在x=1处取得极小值,与题意不符;
当a=﹣6,b=9时,f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3)
当x<1时,f′(x)>0,当1<x<3时,f′(x)<0,
∴f(x)在x=1处取得极大值,符合题意;
∴=﹣.
故选A.
练习册系列答案
相关题目