题目内容
【题目】已知函数f(x)=ax2﹣lnx(a∈R)
(1)当a=1时,求函数y=f(x)的单调区间;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范围;
(3)若a= ,证明:ex﹣1f(x)≥x.
【答案】
(1)解:a=1时,函数f(x)=x2﹣lnx, .
函数f(x)的定义域为(0,+∞),
则由f'(x)>0得 ,由f'(x)<0得 ,
所以函数f(x)的单调递增区间为 ,单调递减区间为
(2)解:由已知得f′(x)=2ax﹣ .
若f′(x)≤0在(0,1]上恒成立,则2a≤ 恒成立,所以2a≤( )min=1,即a≤ .
①a≤ 时,f(x)在(0,1]单调递减,f(x)min=f(1)=a,与|f(x)|≥1恒成立矛盾.
②当a> 时,令f′(x)=2ax﹣ =0,得x= ∈(0,1].
所以当x∈(0, )时,f′(x)<0,f(x)单调递减;
当x∈( ,1]时,f′(x)>0,f(x)单调递增.
所以f(x)min=f( )=a( )2﹣ln = + ln2a.
由|f(x)|≥1得, + ln2a≥1,所以a≥ .
综上,所求a的取值范围是[ ,+∞)
(3)解:证明:a= 时,由(Ⅱ)得f(x)min= + ln2a=1.
令h(x)= ,则h′(x)= .
所以当0<x<1时,h′(x)>0,h(x)单增;当x≥1时,h′(x)<0,h(x)单减.
所以h(x)≤h(1)=1.…(13分)
所以f(x)≥h(x),即ex﹣1f(x)≥x
【解析】(1)求出导数,由导数大于0,可得增区间;导数小于0,可得减区间;(2)求出导数,对a讨论,①a≤ 时,②当a> 时,求出单调区间,可得最小值,由恒成立思想即可得到a的范围;(3)a= 时,由(Ⅱ)得f(x)min= + ln2a=1,令h(x)= ,求出导数,单调区间,运用单调性即可得证.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.
【题目】为调查某地区老年人是否需要志愿者提供帮助,从该地区调查了500位老人,结果如下:
性别 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估计该地区老年人中,需要志愿提供帮助的老年人的比例;
(2)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?提供帮助的老年人的比例?说明理由.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
附:
【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:
打算观看 | 不打算观看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.