题目内容

【题目】设f(x)=sin( x﹣ )﹣2cos2 x+1.
(1)求f(x)的最小正周期;
(2)若函数y=f(x)与y=g(x)的图象关于直线x=1对称,求当x∈[0, ]时,y=g(x)的最大值.

【答案】
(1)解:f(x)=sin xcos ﹣cos xsin ﹣cos x= sin x﹣ cos x= sin x﹣ cos x)= sin( x﹣ ),

∵ω=

∴f(x)的最小正周期为T= =8


(2)解:在y=g(x)的图象上任取一点(x,g(x)),它关于x=1的对称点(2﹣x,g(x)),

由题设条件,点(2﹣x,g(x))在y=f(x)的图象上,

从而g(x)=f(2﹣x)= sin[ (2﹣x)﹣ ]= sin[ x﹣ ]= cos( x+ ),

当0≤x≤ 时, x+

则y=g(x)在区间[0, ]上的最大值为gmax= cos =


【解析】(1)f(x)解析式第一项利用两角和与差的正弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出f(x)的最小正周期;(2)在y=g(x)的图象上任取一点(x,g(x)),根据f(x)与g(x)关于直线x=1对称,表示出此点的对称点,根据题意得到对称点在f(x)上,代入列出关系式,整理后根据余弦函数的定义域与值域即可确定出g(x)的最大值.
【考点精析】掌握两角和与差的正弦公式是解答本题的根本,需要知道两角和与差的正弦公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网