题目内容

【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:

打算观看

不打算观看

女生

20

b

男生

c

25

(1)求出表中数据b,c;

(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;

(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.

【答案】(1) b=30, c=50;(2) .

【解析】

(1)根据分层抽样方法,分别求得女生和男生的人数,进而即可求解表中的数据的值;

(2)由(1)利用独立性检验的公式,求得的值,比较即可作出判断的结果;

(3)设名男生分别为名女生分别为,由题意列举出从人中选出人接受电视台采访的基本事件的总数,找出其中恰为一男一女所包括基本时间的个数,利用古典概型及概率的计算公式,即可求解.

(1)根据分层抽样方法抽得女生50人,男生75人,所以b=50-20=30(人),

c=75-25=50(人)

(2)因为,所以有99%的把握认为观看2018年足球世界杯比赛与性别有关.

(说明:数值代入公式1分,计算结果3分,判断1分)

(3)设5名男生分别为A、B、C、D、E,2名女生分别为a、b,由题意可知从7人中选出5人接受电视台采访,相当于从7人中挑选2人不接受采访,其中一男一女,所有可能的结果有{A,B}{A,C}{A,D}{A,E}{A,a}{A,b}{B,C}{B,D}{B,E}{B,a}{B,b}{C,D}{C,E}{C,a} {C,b}{D,E}{D,a}{D,b}{E,a}{E,b}{a,b},共21种,

其中恰为一男一女的包括,{A,a}{A,b}{B,a}{B,b}{C,a}{C,b}{D,a}{D,b}{E,a}{E,b},

共10种.因此所求概率为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网