题目内容
【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:
打算观看 | 不打算观看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.
【答案】(1) b=30, c=50;(2) .
【解析】
(1)根据分层抽样方法,分别求得女生和男生的人数,进而即可求解表中的数据的值;
(2)由(1)利用独立性检验的公式,求得的值,比较即可作出判断的结果;
(3)设名男生分别为,名女生分别为,由题意列举出从人中选出人接受电视台采访的基本事件的总数,找出其中恰为一男一女所包括基本时间的个数,利用古典概型及概率的计算公式,即可求解.
(1)根据分层抽样方法抽得女生50人,男生75人,所以b=50-20=30(人),
c=75-25=50(人)
(2)因为,所以有99%的把握认为观看2018年足球世界杯比赛与性别有关.
(说明:数值代入公式1分,计算结果3分,判断1分)
(3)设5名男生分别为A、B、C、D、E,2名女生分别为a、b,由题意可知从7人中选出5人接受电视台采访,相当于从7人中挑选2人不接受采访,其中一男一女,所有可能的结果有{A,B}{A,C}{A,D}{A,E}{A,a}{A,b}{B,C}{B,D}{B,E}{B,a}{B,b}{C,D}{C,E}{C,a} {C,b}{D,E}{D,a}{D,b}{E,a}{E,b}{a,b},共21种,
其中恰为一男一女的包括,{A,a}{A,b}{B,a}{B,b}{C,a}{C,b}{D,a}{D,b}{E,a}{E,b},
共10种.因此所求概率为.
【题目】某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:
学院 | 机械工程学院 | 海洋学院 | 医学院 | 经济学院 |
人数 | 4 | 6 | 4 | 6 |
(Ⅰ)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一学院的概率;
(Ⅱ)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.
【题目】为了解学生寒假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表:
本数 | 0 | 1 | 2 | 3 | 4 | 5 |
男生 | 0 | 1 | 4 | 3 | 2 | 2 |
女生 | 0 | 0 | 1 | 3 | 3 | 1 |
(I)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率;
(II)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为 X,求随机变量 X的分布列和数学期望;
(III)试判断男学生阅读名著本数的方差 与女学生阅读名著本数的方差 的大小(只需写出结论).