题目内容
【题目】(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系中,直线l的方程为x-y+4=0,曲线C的参数方程为.
(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
【答案】
【解析】
试题分析:(1)消去曲线参数方程中的参数,得到曲线普通方程,根据公式,把点的坐标化为直角坐标方程,即可判断点与直线的关系;(2)设,由点到直线的距离公式可得距离的表达式,通过三角恒等变换化为正弦型函数在给定区间上的最值来求解.
试题解析:(1)∵曲线C的参数方程为,
∴曲线C的普通方程是,
∵点P的极坐标为,
∴点P的普通坐标为(4cos,4sin),即(0,4),
把(0,4)代入直线l:x﹣y+4=0,
得0﹣4+4=0,成立,
故点P在直线l上.
(2)∵Q在曲线C:上,(0°≤α<360°)
∴到直线l:x﹣y+4=0的距离:
=,(0°≤α<360°)
∴.
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.
参考公式: ,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |