题目内容
12.已知函数$f(x)={(\sqrt{x}+\sqrt{2})^2}$,(x≥0),又数列{an}中,an>0,a1=2,该数列的前n项和记为Sn,对所有大于1的自然数n都有Sn=f(Sn-1).(Ⅰ)求{an}的通项公式;
(Ⅱ)记bn=$\frac{{{a_{n+1}}^2+{a_n}^2}}{{2{a_{n+1}}{a_n}}}$,{bn}其前n项和为Tn,证明:Tn<n+1.
分析 (Ⅰ)由$f(x)={(\sqrt{x}+\sqrt{2})^2}$,Sn=f(Sn-1)知:${S_n}={(\sqrt{{S_{n-1}}}+\sqrt{2})^2}$,可得$\sqrt{S_n}-\sqrt{{S_{n-1}}}=\sqrt{2}$,利用等差数列的通项公式可得$\sqrt{{S}_{n}}$,再利用递推式即可得出an.
(Ⅱ)bn=$\frac{4{n}^{2}+1}{4{n}^{2}-1}$=$1+\frac{1}{2n-1}-\frac{1}{2n+1}$,利用“裂项求和”即可得出.
解答 (Ⅰ)解:由$f(x)={(\sqrt{x}+\sqrt{2})^2}$,Sn=f(Sn-1)知:${S_n}={(\sqrt{{S_{n-1}}}+\sqrt{2})^2}$,
又an>0,a1=2,Sn>0,∴$\sqrt{S_n}-\sqrt{{S_{n-1}}}=\sqrt{2}$,
即:$\left\{{\sqrt{S_n}}\right\}$是以$\sqrt{2}$为首项,$\sqrt{2}$为公差的等差数列,
∴$\sqrt{S_n}=\sqrt{2}n$,${S_n}=2{n^2}$,
∴当n≥2时,an=Sn-Sn-1=4n-2,当n=1时也成立,
∴an=4n-2.
(Ⅱ)证明:${b_n}=\frac{{{a_{n+1}}^2+{a_n}^2}}{{2{a_{n+1}}{a_n}}}=\frac{{{{(4n+2)}^2}+{{(4n-2)}^2}}}{2(4n+2)(4n-2)}=\frac{{8{n^2}+2}}{{2(4{n^2}-1)}}$
=$1+\frac{2}{{4{n^2}-1}}=1+\frac{1}{2n-1}-\frac{1}{2n+1}$,
Tn=$\sum_{i=1}^n{(1+\frac{1}{2i-1}-\frac{1}{2i+1}})$<n+1.
点评 本题考查了等差数列的通项公式、递推式的应用、“裂项求和”方法、不等式的性质、“放缩法”,考查了推理能力与计算能力,属于中档题.
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
A. | -2014 | B. | 2014 | C. | 2015 | D. | -2015 |
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
A. | ?p | B. | p∧q | C. | (?p)∧q | D. | p∧(?q) |