题目内容

(本小题满分10分)
已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

(1) a=2   (2) (-∞,5).

解析试题分析:解法一:(1)由f(x)≤3,得|x-a|≤3,解得a-3≤xa+3.
又已知不等式f(x)≤3的解集为{x|-1≤x≤5},
所以解得a=2.
(2)当a=2时,f(x)=|x-2|.设g(x)=f(x)+f(x+5),
于是g(x)=|x-2|+|x+3|=
所以当x<-3时,g(x)>5;当-3≤x≤2时,g(x)=5;当x>2时,g(x)>5.
综上可得,g(x)的最小值为5.
从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,
m的取值范围为(-∞,5].
解法二:(1)同解法一.
(2)当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5).
由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立)得,g(x)的最小值为5.
从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,
m的取值范围为(-∞,5).
考点:绝对值不等式的解法;函数恒成立问题.
点评:本题考查函数恒成立问题,绝对值不等式的解法,考查转化思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网