题目内容

已知函数(a>1).
(1)判断函数f (x)的奇偶性;
(2)求f (x)的值域;
(3)证明f (x)在(-∞,+∞)上是增函数.

(1)是奇函数.(2)值域为(-1,1).(3)设x1<x2,
。=,得到f (x1)-f (x2)<0,即f (x1)<f (x2).

解析试题分析:(1)是奇函数.(2)值域为(-1,1).(3)设x1<x2,
。=
∵a>1,x1<x2,∴a<a. 又∵a+1>0,a+1>0,
∴f (x1)-f (x2)<0,即f (x1)<f (x2).
考点:本题主要考查函数的奇偶性、单调性,指数函数的性质。
点评:中档题,判断函数的奇偶性,一要看定义域算法关于原点对称,二是要研究f(-x)与f(x)关系;研究函数单调性,往往有两种方法,一是利用单调函数的定义,二是利用导数。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网