题目内容

(本小题满分15分)
已知以点为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点。
(Ⅰ)求证:△AOB的面积为定值;
(Ⅱ)设直线2x+y-4=0与圆C交于点M、N,若,求圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求的最小值及此时点P的坐标。
(Ⅰ)略
(Ⅱ)圆C的方程为
(Ⅲ)的最小值为,直线的方程为,则直线与直线x+y+2=0的交点P的坐标为
解:(Ⅰ)由题设知,圆C的方程为,化简得,当y=0时,x=0或2t,则;当x=0时,y=0或,则
为定值。  ……………5分
(II)∵,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率,∴t=2或t=-2
∴圆心C(2,1)或C(-2,-1)∴圆C的方程为,由于当圆方程为时,直线2x+y-4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去。
∴圆C的方程为                ……………10分
(Ⅲ)点B(0,2)关于直线x+y+2=0的对称点为 ,则,又到圆上点Q的最短距离为
所以的最小值为,直线的方程为,则直线与直线x+y+2=0的交点P的坐标为              ……………15分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网