题目内容

【题目】已知数列是递减的等差数列,的前项和是,且,有以下四个结论

若对任意都有成立,则的值等于78时;

存在正整数,使

存在正整数,使

其中所有正确结论的序号是

A. ①②B. ①②③

C. ②③④D. ①②③④

【答案】D

【解析】

S6=S9,得到a7+a8+a9=0,利用等差数列的性质化简,得到a8=0,进而得到选项①正确;再由数列{an}是递减的等差数列以及a8=0,可得出当n等于78时,sn取最大值,选项②正确;利用等差数列的前n项和公式表示出S15,利用等差数列的性质化简后,将a8的值代入可得出S15=0,故存在正整数k,使Sk=0,选项③正确;当m=5时,表示出S10-S5利用等差数列的性质化简后,将a8=0代入可得出S10-S5=0,即S10=S5 ,故存在正整数m,使Sm=S2m,选项④正确.

由等差数列的性质,可得,故结论正确;

数列是递减的等差数列,

的值等于7或8时,取得最大值,故结论正确;

,则存在正整数时,使故结论正确;

由等差数列的性质,可得

存在正整数,使故结论正确.

故所有正确结论的序号是①②③④.故选D.

练习册系列答案
相关题目

【题目】某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如下图所示:

1)将去年的消费金额超过 3200 元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取 2 人,求至少有 1 位消费者,其去年的消费金额超过 4000 元的概率;

2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:

会员等级

消费金额

普通会员

2000

银卡会员

2700

金卡会员

3200

预计去年消费金额在内的消费者今年都将会申请办理普通会员,消费金额在内的消费者都将会申请办理银卡会员,消费金额在内的消费者都将会申请办理金卡会员. 消费者在申请办理会员时,需-次性缴清相应等级的消费金额.该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:

方案 1:按分层抽样从普通会员, 银卡会员, 金卡会员中总共抽取 25 位“幸运之星”给予奖励: 普通会员中的“幸运之星”每人奖励 500 元; 银卡会员中的“幸运之星”每人奖励 600 元; 金卡会员中的“幸运之星”每人奖励 800 .

方案 2:每位会员均可参加摸奖游戏,游戏规则如下:从-个装有 3 个白球、 2 个红球(球只有颜色不同)的箱子中, 有放回地摸三次球,每次只能摸-个球.若摸到红球的总数消费金额/元为 2,则可获得 200 元奖励金; 若摸到红球的总数为 3,则可获得 300 元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加 1 次摸奖游戏;每位银卡会员均可参加 2 次摸奖游戏;每位金卡会员均可参加 3 次摸奖游戏(每次摸奖的结果相互独立) .

以方案 2 的奖励金的数学期望为依据,请你预测哪-种方案投资较少?并说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网