题目内容
设数列
满足![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039297305.gif)
且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039344816.gif)
(Ⅰ)求
,
并求数列
的通项公式;
(Ⅱ)对一切
,证明
成立;
(Ⅲ)记数列
的前
项和分别是
,证明![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039671459.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039281459.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039297305.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039328557.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039344816.gif)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039375357.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039390208.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039406263.gif)
(Ⅱ)对一切
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039422380.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039437534.gif)
(Ⅲ)记数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039500485.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039624192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039640376.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039671459.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039734288.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039843411.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039858295.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039874446.gif)
解:(1)
,
,
……………………(2分)
由
得
……………………(3分)
即数列
是以
为首项,以
为公比的等比数列
……………………(4分)
注:用数学归纳法也可以。
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040124880.gif)
要证明
只需证明![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040186519.gif)
即证
即证明
成立……………………(6分)
构造函数
……………………(7分)
则
,……………………(8分)
当
时,
,即
在
上单调递减,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040404454.gif)
,即
对一切
都成立,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039734288.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039843411.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039858295.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039328557.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039968595.gif)
即数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039999417.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040046226.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040046226.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039874446.gif)
注:用数学归纳法也可以。
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040124880.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040139128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144039437534.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040186519.gif)
即证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040248599.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040264567.gif)
构造函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040264693.gif)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040280548.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040295244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040311343.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040373270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040389410.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040404454.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040420432.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040264567.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144040451383.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目