题目内容
【题目】在单调递增数列中, ,且成等差数列, 成等比数列,.
(1)①求证:数列为等差数列;
②求数列通项公式;
(2)设数列的前项和为,证明:.
【答案】(1)①证明见解析;②当为偶数时,当为奇数时;(2)证明见解析.
【解析】
试题分析:(1)①根据等差中项和等比中项有,化简得,所以数列为等差数列;②由①得首项为公差为,所以,即,结合可得,因此,当为偶数时,当为奇数时;(2),另外,,故,所以,利用裂项求和法求得.
试题解析:
(1)①因为数列单调递增数列,, 由题意 成等差数列, 成等比数列得. ,于是 , 化简得 , 所以数列为等差数列.
②又,所以数列的首项为,公差为,从而.结合可得,因此,
当为偶数时,当为奇数时.
(2)求数列通项公式为:
,
因为
,所以,
则有.
练习册系列答案
相关题目