题目内容
【题目】已知函数,其中为常数.
(1)讨论函数的单调性;
(2)若存在两个极值点,求证:无论实数取什么值都有.
【答案】(1)当时,在区间上单调递增;
当时,在上单调递减,在上单调递增;
(2)见解析.
【解析】试题分析: (1)先求导数,研究导函数在定义域上零点情况,本题实质研究在上零点情况:当方程无根时,函数单调递增;当方程有两个相等实根时,函数单调递增;当方程有两个不等实根时,比较两根与定义区间之间关系,再确定单调区间,(2)先由(1)知,且两个极值点满足.再代入化简得,利用导数研究单调性,最后根据单调性证明不等式.
试题解析:(1)函数的定义域为.
,记,判别式.
①当即时,恒成立,,所以在区间上单调递增.
②当或时,方程有两个不同的实数根,记,,显然
(ⅰ)若,图象的对称轴,.
两根在区间上,可知当时函数单调递增,,所以,所以在区间上递增.
(ⅱ)若,则图象的对称轴,.,所以,当时,,所以,所以在上单调递减.当或时,,所以,所以在上单调递增.
综上,当时,在区间上单调递增;当时,在上单调递减,在上单调递增.
(2)由(1)知当时,没有极值点,当时,有两个极值点,且.
,
∴又,
.记,,则,所以在时单调递增,,所以,所以.
练习册系列答案
相关题目