题目内容
8.己知三棱锥P-ABC中,PA⊥PB⊥PC,且PA=$\sqrt{3}$,PB=2,PC=3,则其外接球的体积为$\frac{32}{3}$π.分析 以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P-ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P-ABC外接球的体积.
解答 解:以PA、PB、PC为过同一顶点的三条棱,作长方体如图
则长方体的外接球同时也是三棱锥P-ABC外接球.
∵长方体的对角线长为$\sqrt{3+4+9}$=4,
∴球直径为4,半径R=2,
因此,三棱锥P-ABC外接球的体积是$\frac{4}{3}$πR3=$\frac{4}{3}$π×23=$\frac{32}{3}$π
故答案为:$\frac{32}{3}$π.
点评 本题给出三棱锥的三条侧棱两两垂直,求它的外接球的表面积,着重考查了长方体对角线公式和球的表面积计算等知识,属于基础题.
练习册系列答案
相关题目
18.已知f(x)=ax3+bx+1(ab≠0),若f(2015)=k,则f(-2015)=( )
A. | k-2 | B. | 2-k | C. | 1-k | D. | -k-1 |
3.已知x3-x7=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+a8(x-1)7,则a3=( )
A. | 35 | B. | 36 | C. | -34 | D. | -33 |
19.函数$f(x)=\left\{\begin{array}{l}(1-3a)x+2,x≤1\\{a^x},x>1\end{array}\right.$是R上的减函数,则实数a的取值范围为( )
A. | $(\frac{1}{3},1)$ | B. | $[\frac{3}{4},1)$ | C. | $(\frac{1}{3},\frac{3}{4})$ | D. | $(\frac{1}{3},\frac{3}{4}]$ |