题目内容
【题目】2017年3月14日,“共享单车”终于来到芜湖,共享单车又被亲切称作“小黄车”是全球第一个无桩共享单车平台,开创了首个“单车共享”模式.相关部门准备对该项目进行考核,考核的硬性指标是:市民对该项目的满意指数不低于,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,随机访问了使用共享单车的名市民,并根据这名市民对该项目满意程度的评分(满分分),绘制了如下频率分布直方图:
(I)为了了解部分市民对“共享单车”评分较低的原因,该部门从评分低于分的市民中随机抽取人进行座谈,求这人评分恰好都在的概率;
(II)根据你所学的统计知识,判断该项目能否通过考核,并说明理由.
(注:满意指数=)
【答案】(I);(II)见解析.
【解析】试题分析:(I)先根据直方图求得两组的人数,分别为 人和 人,列举出评分低于 分的市民中随机抽取人,所有可能的结果共有种,符合条件的共三种。由古典概型概率公式可得结果;(II)先求出平均得分,除以 ,跟 比较即可.
试题解析:(I)依题意得:评分在、的频率分别为和,
所以评分在、的市民分别有个和个,记为
从评分低于分的市民中随机抽取人,所有可能的结果共有种,
它们是.
其中人评分都在的有三种,即.
故所求的概率为.
(II)由样本的频率分布直方图可得满意程度的平均得分为
.
可估计市民的满意指数为,
所以该项目能通过验收.
【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:
售出水量(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(单位:元) | 165 | 142 | 148 | 125 | 150 |
学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.
(1)若与成线性相关,则某天售出9箱水时,预计收入为多少元?
(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望;
附:回归方程,其中.
【题目】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次性购物量 | 1至4件 | 5 至8件 | 9至12件 | 13至16件 | 17件及以上 |
顾客数(人) | x | 30 | 25 | y | 10 |
结算时间(分钟/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)