题目内容
【题目】已知函数f(x)是R上的偶函数,且在(﹣∞,0]上是减函数,若f(a)≥f(2),则实数a的取值范围是 .
【答案】(﹣∞,﹣2]∪[2,+∞)
【解析】解:∵函数f(x)是R上的偶函数,且在(﹣∞,0]上是减函数,
∴函数f(x)在[0,+∞)上是增函数,
∵f(a)≥f(2),即f(|a|)≥f(2),
∴|a|≥2,
解得a≥2或a≤﹣2.
∴实数a的取值范围是(﹣∞,﹣2]∪[2,+∞).
所以答案是:(﹣∞,﹣2]∪[2,+∞).
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.
练习册系列答案
相关题目
【题目】已知随机变量X的概率分布列如表所示:且X的数学期望EX=6,则( )
X | 5 | 6 | 7 | 8 |
p | 0.4 | a | b | 0.1 |
A.a=0.3,b=0.2
B.a=0.2,b=0.3
C.a=0.4,b=0.1
D.a=0.1,b=0.4