题目内容
【题目】海南沿海某次超强台风过后,当地人民积极恢复生产,焊接工王师傅每天都很忙碌.一天他遇到了一个难题:如图所示,有一块扇形钢板,半径为米,圆心角,施工要求按图中所画的那样,在钢板上裁下一块平行四边形钢板,要求使裁下的钢板面积最大.请你帮助王师傅解决此问题.连接,设,过作,垂足为.
(1)求线段的长度(用来表示);
(2)求平行四边形面积的表达式(用来表示);
(3)为使平行四边形面积最大,等于何值?最大面积是多少?
【答案】(1)(2)(3)当时,所裁钢板的面积最大,最大面积为平方米.
【解析】
(1)先根据题意在中表示,再在中表示即可.
(2)由(1)知和, 由可知,表示平行四边形面积,结合二倍角公式,逆用两角和的正弦公式表示即可.
(3)由(2)结合,求出函数最值即可.
解:(1)在中,,,
四边形为平行四边形∥即
在中
所以;
(2),
设平行四边形的面积为,
则
=
=
=
=
=;
(3)由于,
所以,
当,即时,
,
所以当时,所裁钢板的面积最大,最大面积为平方米.
【题目】为了参加某运动会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:
队别 | 北京 | 上海 | 天津 | 八一 |
人数 | 4 | 6 | 3 | 5 |
(1)从这18名队员中随机选出两名,求两人来自同一队的概率;
(2)若要求选出两名队员担任正副队长,设其中来自北京队的人数为,求随机变量的分布列.
【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:
组别 | PM2.5浓度 | 频数(天) | 频率 |
第一组 | (0,25] | 3 | 0.15 |
第二组 | (25,50] | 12 | 0.6 |
第三组 | (50,75] | 3 | 0.15 |
第四组 | (75,100] | 2 | 0.1 |
(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图. ①求图4中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列和数学期望.