题目内容

【题目】以下五个命题中:

,则的取值范围是

不等式,对一切x恒成立,则实数的取值范围为

若椭圆的两焦点为,且弦点,则的周长为16

若常数成等差数列,则成等比数列;

⑤数列的前项和为=+21,则这个数列一定是等差数列.

所有正确命题的序号是_____________.

【答案】

【解析】

对于①由不等式性质可判断;对于②讨论当两种情况,即可判断;对于③根据椭圆方程求得,求得的周长, 即可作出判断;对于④由等差中项与等比中项定义和性质,即可判断;对于⑤根据数列中,结合首项即可判断数列是否为等差数列.

对于①,,,所以,故①错误;

对于②,当时,不等式变为,对一切x恒成立,所以成立;当时,由二次函数的性质可知,解得.综上可知,故②错误;

对于③,椭圆..,的周长为,故③错误;

对于④,,,成等差数列则.常数,,所以,,成等比数列,故④正确;

对于⑤,数列的前项和为,,代入解得.,可得,化简可得.且,所数列是从第二项开始的等差数列.故⑤错误.

综上可知,正确的为④.

故答案为: ④

练习册系列答案
相关题目

【题目】实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.

(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;

(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网