题目内容
【题目】已知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,Sn为数列{an}的前n项和,则的最小值为( )
A.4B.3C.D.2
【答案】A
【解析】
a1,a3,a13成等比数列,a1=1,可得:a32=a1a13,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入利用分离常数法化简后,利用基本不等式求出式子的最小值.
解:∵a1,a3,a13成等比数列,a1=1,
∴a32=a1a13,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n-1)=2n-1.
Sn=n+×2=n2.
∴==
=n+1+-2≥2-2=4,
当且仅当n+1=时取等号,此时n=2,且取到最小值4,
故选:A.
练习册系列答案
相关题目
【题目】中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,
(i)求这10人中,男生、女生各有多少人?
(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为,求的分布列和数学期望.
参考公式:,其中.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |