题目内容
【题目】某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查。现在按课外阅读时间的情况将学生分成三类:A类(不参加课外阅读),B类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),C类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时)。调查结果如下表:
A类 | B类 | C类 | |
男生 | x | 5 | 3 |
女生 | y | 3 | 3 |
(1)求出表中x,y的值;
(2)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为“参加课外阅读与否”与性别有关;
男生 | 女生 | 总计 | |
不参加课外阅读 | |||
参加课外阅读 | |||
总计 |
附:K2=
P(K2≥k0) | 0.10 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
【答案】(1)x=4,y=2(2)见解析
【解析】
(1)根据题意,求出抽出20人中男生人数和女生人数,再分别减去5,3和3,3即可得出x,y的值.
(2)完成列联表,计算,即可得出结论.
(1)设抽取的20人中,男、女生人数分别为,则
所以,.
(2)列联表如下:
男生 | 女生 | 总计 | |
不参加课外阅读 | 4 | 2 | 6 |
参加课外阅读 | 8 | 6 | 14 |
总计 | 12 | 8 | 20 |
的观测值,
所以没有的把握认为“参加阅读与否”与性别有关.
【题目】某单位共有10名员工,他们某年的收入如下表:
员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(万元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求该单位员工当年年薪的平均值和中位数;
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?
附:线性回归方程中系数计算公式分别为:,,其中、为样本均值.
【题目】为了对某课题进行研究,用分层抽样方法从三所高校,,的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).
高校 | 相关人员 | 抽取人数 |
A | 18 | |
B | 36 | 2 |
C | 54 |
(1)求,;
(2)若从高校,抽取的人中选2人做专题发言,求这2人都来自高校的概率.