题目内容
【题目】已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=BC=AC=,则球的表面积为( )
A. 12π B. 8π C. 4π D. 3π
【答案】D
【解析】试题分析:由题意一个三棱锥S﹣ABC的三条侧棱SA、SB、SC两两互相垂直,可知,三棱锥是正方体的一个角,扩展为正方体,两者的外接球相同,正方体的对角线就是球的直径,求出直径即可求出球的表面积.
详解:三棱锥S﹣ABC中,SA=SB=SC=1,AB=BC=AC=,
∴共顶点S的三条棱两两相互垂直,且其长均为1,
三棱锥的四个顶点同在一个球面上,三棱锥是正方体的一个角,扩展为正方体,
三棱锥的外接球与正方体的外接球相同,正方体的对角线就是球的直径,
所以球的直径为:,半径为
,
外接球的表面积为:4π×()2=3π.
故选:D.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目