题目内容
【题目】已知数列{an}的前n项和是Sn,且Sn=1(n∈N),数列{bn}是公差d不等于0的等差数列,且满足:b1=,而b2,b5,ba14成等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn.
【答案】(1),;(2)
【解析】分析:(I)Sn=1(n∈N),n≥2时,Sn﹣1+an﹣1=1,相减可得:an﹣an﹣1=0,化为:an=an﹣1.利用等比数列的通项公式可得an.数列{bn}是公差d不等于0的等差数列,且满足:b1==1.由b2,b5,b14成等比数列.可得=b2b14,(1+4d)2=(1+d)(1+13d),d≠0.解得d.即可得出;(Ⅱ)设cn=anbn=,利用错位相减法即可得出.
详解:
(1)Sn=1(n∈N),n≥2时,Sn﹣1+an﹣1=1,相减可得:an﹣an﹣1=0,化为:an=an﹣1.
n=1时,a1+=1,解得a1=.
∴数列{an}是等比数列,首项为,公比为.∴an==2×.
数列{bn}是公差d不等于0的等差数列,且满足:b1==1.
∵b2,b5,b14成等比数列.∴=b2b14,
∴(1+4d)2=(1+d)(1+13d),d≠0.解得d=2.∴bn=1+2(n﹣1)=2n﹣1.
(2)设cn=anbn=.
求数列{cn}的前n项和Tn=+……+.
=+……++,
相减可得:Tn=+4﹣=+4×﹣,
化为:Tn=2﹣.
【题目】某水产养殖基地要将一批海鲜用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由水产养殖基地承担.若水产养殖基地恰能在约定日期(×月×日)将海鲜送达,则销售商一次性支付给水产养殖基地万元;若在约定日期前送到,每提前一天销售商将多支付给水产养殖基地万元;若在约定日期后送到,每迟到一天销售商将少支付给水产养殖基地万元.为保证海鲜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送海鲜,已知下表内的信息:
统计信息 汽车 行驶路线 | 不堵车的情况下到达城市乙所需时间(天) | 堵车的情况下到达城市乙所需时间(天) | 堵车的概率 | 运费(万元) |
公路 | ||||
公路 |
(注:毛利润销售商支付给水产养殖基地的费用运费)
(Ⅰ)记汽车走公路时水产养殖基地获得的毛利润为(单位:万元),求的分布列和数学期望.
(Ⅱ)假设你是水产养殖基地的决策者,你选择哪条公路运送海鲜有可能让水产养殖基地获得的毛利润更多?