题目内容

【题目】如图,在四棱锥中,底面为矩形, 平面 中点.

(I)证明: 平面

(II)证明: 平面

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)根据矩形性质得,再根据线面平行判定定理得结论(2)先由平面,得,由矩形得,进而根据线面垂直判定定理得平面,即得,再根据等腰三角形性质得,所以根据线面垂直判定定理得结论

试题解析:(I)证明:在矩形中,

平面

平面

平面

(II)在等腰中,

边中点,

平面

点,

平面

平面

平面

点,

平面

平面

点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.

(1)证明线面、面面平行,需转化为证明线线平行.

(2)证明线面垂直,需转化为证明线线垂直.

(3)证明线线垂直,需转化为证明线面垂直.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网