题目内容
【题目】己知函数,它的导函数为.
(1)当时,求的零点;
(2)若函数存在极小值点,求的取值范围.
【答案】(1)是的零点;(2)
【解析】
(1)求得时的,由单调性及求得结果.
(2)当时,,易得存在极小值点,再分当时和当时,令,通过研究的单调性及零点情况,得到的零点及分布的范围,进而得到的极值情况,综合可得结果.
(1)的定义域为,
当时,,.
易知为上的增函数,
又,所以是的零点.
(2),
① 当时,,令,得;令,得,
所以在上单调递减,在上单调递增,符合题意.
令,则.
② 当时,,所以在上单调递增.
又,,
所以在上恰有一个零点,且当时,;当时,,所以是的极小值点,符合题意.
③ 当时,令,得.
当)时,;当时,,
所以.
若,即当时,恒成立,
即在上单调递增,无极值点,不符合题意.
若,即当时,,
所以,即在上恰有一个零点,且当时,;当时,,
所以是的极小值点,符合题意.
综上,可知,即的取值范围为.
练习册系列答案
相关题目