题目内容
【题目】已知函数.
(1)证明:函数在上存在唯一的零点;
(2)若函数在区间上的最小值为1,求的值.
【答案】(1)证明见解析;(2)
【解析】
(1)求解出导函数,分析导函数的单调性,再结合零点的存在性定理说明在上存在唯一的零点即可;
(2)根据导函数零点,判断出的单调性,从而可确定,利用以及的单调性,可确定出之间的关系,从而的值可求.
(1)证明:∵,∴.
∵在区间上单调递增,在区间上单调递减,
∴函数在上单调递增.
又,令,,
则在上单调递减,,故.
令,则
所以函数在上存在唯一的零点.
(2)解:由(1)可知存在唯一的,使得,即(*).
函数在上单调递增.
∴当时,,单调递减;当时,,单调递增.
∴.
由(*)式得.
∴,显然是方程的解.
又∵是单调递减函数,方程有且仅有唯一的解,
把代入(*)式,得,∴,即所求实数的值为.
练习册系列答案
相关题目