题目内容
【题目】某贫困地区有1500户居民,其中平原地区1050户,山区450户.为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元).
(Ⅰ)应收集多少户山区家庭的样本数据?
(Ⅱ)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为,,,,,,.如果将频率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;
(Ⅲ)样本数据中,由5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有的把握认为“该地区2017年家庭年收入与地区有关”?
附:
【答案】(Ⅰ)45;(Ⅱ);(Ⅲ)有的把握认为“该地区2017年家庭年收入与地区有关”.
【解析】分析:(Ⅰ)利用分层抽样中每层所抽取的比例数相等求得答案;(Ⅱ)根据频率分布直方图可得该地区2017年家庭收入超过1.5万元的概率;(Ⅲ)由题意列出2×2列联表,计算出的值,结合附表得答案.
详解:(Ⅰ)由已知可得每户居民被抽取的概率为0.1,故应手机户山区家庭的样本数据.
(Ⅱ)由直方图可知该地区2017年家庭年收入超过1.5万元的概率约为.
(Ⅲ)样本数据中,年收入超过2万元的户数为户.
而样本数据中,有5户山区家庭的年收入超过2万元,故列联表如下:
所以,
∴有的把握认为“该地区2017年家庭年收入与地区有关”.
【题目】工厂车间某部门有8个小组,在一次技能考试中成绩情况分析如下:
小组 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
大于90分人数 | 6 | 6 | 7 | 3 | 5 | 3 | 3 | 7 |
不大于90分人数 | 39 | 39 | 38 | 42 | 40 | 42 | 42 | 38 |
(1)求90分以上人数对小组序号的线性回归方程;
附:回归方程为,其中,.本题,.
(2)能否在犯错误的概率不超过0.01的前提下认为7组与8组的成绩是否优秀(大于90分)与小组有关系.附部分临界值表:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
【题目】为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了人进行分析,得到如下列联表(单位:人).
经常使用 | 偶尔使用或不使用 | 合计 | |
岁及以下 | |||
岁以上 | |||
合计 |
(1)根据以上数据,能否在犯错误的概率不超过的前提下认为市使用共享单车的情况与年龄有关;
(2)(i)现从所选取的岁以上的网友中,采用分层抽样的方法选取人,再从这人中随机选出人赠送优惠券,求选出的人中至少有人经常使用共享单车的概率;
(ii)将频率视为概率,从市所有参与调查的网友中随机选取人赠送礼品,记其中经常使用共享单车的人数为,求的数学期望和方差.
参考公式:,其中.
参考数据: