题目内容
【题目】已知函数,,为自然对数的底数.
(1)当时,证明:,;
(2)若函数在上存在两个极值点,求实数的取值范围.
【答案】(1)证明见解析;(2)
【解析】
(1)将带入解析式,求得导函数,并判断当时函数的单调性,根据函数单调性求得函数在时的最小值,即可证明.
(2)先求得导函数,讨论在的不同取值范围内函数的单调情况,根据函数的单调情况判断其极值的个数,即可求得实数的取值范围.
(1)证明:当时,,则,
当时,,则,又因为,
所以当时,,仅时,,
所以在上是单调递减,所以,即.
(2),因为,所以,,
①当时,恒成立,所以在上单调递增,没有极值点.
②当时,在区间上单调递增,
因为,.
当时,时,
所以在上单调递减,没有极值点.
当时,,所以存在,使
当时,,时,
所以在处取得极小值,为极小值点.
综上可知,若函数在上存在极值点,则实数.
【题目】汽车智能辅助驾驶已得到广泛应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并结合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车,某种算法(如下图所示)将报警时间划分为4段,分别为准备时间、人的反应时间、系统反应时间、制动时间,相应的距离分别为、、、,当车速为(米/秒),且时,通过大数据统计分析得到下表(其中系数随地面湿滑成都等路面情况而变化,).
阶段 | 0、准备 | 1、人的反应 | 2、系统反应 | 3、制动 |
时间 | 秒 | 秒 | ||
距离 | 米 | 米 |
(1)请写出报警距离(米)与车速(米/秒)之间的函数关系式,并求时,若汽车达到报警距离时人和系统均不采取任何制动措施,仍以此速度行驶,则汽车撞上固定障碍物的最短时间(精确到0.1秒);
(2)若要求汽车不论在何种路面情况下行驶,报警距离均小于80米,则汽车的行驶速度应限制在多少米/秒以下?合多少千米/小时?