题目内容
已知圆上任一点 (1)求的取值范围(2)若恒成立,求实数C的最小值,
(1) (2)
解析
(本题12分)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|.(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被曲线C所截线段的长度.
已知圆C1:与圆C2:相交于A、B两点,(1)求公共弦AB所在的直线方程;(2)求圆心在直线上,且经过A、B两点的圆的方程.
(本小题满分13分)已知为平面直角坐标系的原点,过点的直线与圆交于,两点.(I)若,求直线的方程;(Ⅱ)若与的面积相等,求直线的斜率.
求经过点,且与圆相切于点的圆的方程,并判断两圆是外切还是内切?
(10分)已知圆C与圆相交,所得公共弦平行于已知直线 ,又圆C经过点A(-2,3),B(1,4),求圆C的方程。
(本题共9分)如图,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,点P为线段CA(不包括端点)上的一个动点,以为圆心,1为半径作.(1)连结,若,试判断与直线AB的位置关系,并说明理由;(2)当线段PC等于多少时,与直线AB相切?(3)当与直线AB相交时,写出线段PC的取值范围。(第(3)问直接给出结果,不需要解题过程)
已知圆C:x2+y2=r2(r>0)经过点(1,).(1)求圆C的方程;(2)是否存在经过点(-1,1)的直线l,它与圆C相交于A,B两个不同点,且满足=+(O为坐标原点)关系的点M也在圆C上?如果存在,求出直线l的方程;如果不存在,请说明理由.
已知F2、F1是双曲线-=1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为( )