题目内容
【题目】如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE= ,平面ABCD⊥平面BCEG,BC=CD=CE=2BG=2.
(1)证明:AG∥平面BDE;
(2)求二面角E﹣BD﹣G的余弦值.
【答案】
(1)证明:由平面ABCD⊥平面BCEG,平面ABCD∩平面BCEG=BC,CE⊥BC,CE平面BCEG,
∴EC⊥平面ABCD.
根据题意以C为原点,CD,CB,CE分别为x,y,z轴,建立如图所示的空间直角坐标系,
则B(0,2,0),D(2,0,0),E(0,0,2),A(2,1,0)G(0,2,1)
设平面BDE的法向量为 =(x,y,z),
∵ , =(2,0,﹣2),
∴ ,∴x=y=z,
∴平面BDE的一个法向量为 =(1,1,1),
∵ =(﹣2,1,1),∴ =﹣2+1+1=0,∴ ⊥ ,
∵AG平面BDE,
∴AG∥平面BDE
(2)解:设平面BDG的法向量为 =(x,y,z),
∵ =(2,﹣2,0), =(0,0,1),
∴ ,
取x=1,得平面BDG的一个法向量为 =(1,1,0),
设二面角E﹣BD﹣G的平面角为θ,
则cosθ= = = ,
故二面角E﹣BD﹣G的余弦值为
【解析】(1)根据题意以C为原点,CD,CB,CE分别为x,y,z轴,建立空间直角坐标系,利用向量法能证明AG∥平面BDE.(2)求出平面BDG的一个法向量和平面BDE的一个法向量,利用向量法能求出二面角E﹣BD﹣G的余弦值.
【考点精析】利用直线与平面平行的判定对题目进行判断即可得到答案,需要熟知平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.
【题目】某种设备随着使用年限的增加,每年的维护费相应增加.现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如下表:
年份(年) | 1 | 2 | 3 | 4 | 5 |
维护费(万元) | 1.1 | 1.5 | 1.8 | 2.2 | 2.4 |
(Ⅰ)求关于的线性回归方程;
(Ⅱ)若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.
(参考公式: .)