题目内容
【题目】已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)求在区间上的最小值.
【答案】(Ⅰ);(Ⅱ).
【解析】(Ⅰ).
令,得.
与的情况如上:
所以,的单调递减区间是,单调递增区间是.
(Ⅱ)当,即时,函数在上单调递增,
所以在区间上的最小值为.
当,即时,
由(Ⅰ)知在上单调递减,在上单调递增,
所以在区间上的最小值为.
当,即时,函数在上单调递减,
所以在区间上的最小值为.
综上,当时,的最小值为;
当时,的最小值为;
当时,的最小值为.
【题型】解答题
【结束】
19
【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.
(1)求的方程;
(2)若点在上,过作的两弦与,若,求证: 直线过定点.
【答案】(1)或;(2)证明见解析.
【解析】试题分析:(1)当焦点在轴时,设的方程为,当焦点在轴时,设的方程为,分别代入点,求得的值,即可得到抛物线的方程;(2)因为点在上,所以曲线
的方程为,设点,用直线与曲线方程联立,利用韦达定理整理得到,即可得到,判定直线过定点.
试题解析:(1)当焦点在轴时,设的方程为,代人点得,即.当焦点在轴时,设的方程为,代人点得,即,
综上可知: 的方程为或.
(2)因为点在上,所以曲线的方程为.
设点,
直线,显然存在,联立方程有: .,
即即.
直线即直线过定点.
【题目】若关于某设备的使用年限x(年)和所支出的维修费y(万元)有如下统计资料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知,y对x呈线性相关关系.
(1) 请根据上表提供的数据,用最小二乘法求出关于的线性回归方程 ;
(2) 估计使用年限为10年时,试求维修费用约是多少?(精确到两位小数)
【题目】为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了1000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
愿意做志愿者工作 | 不愿意做志愿者工作 | 合计 | |
男大学生 | 610 | ||
女大学生 | 90 | ||
合计 | 800 |
(1)根据题意完成表格;
(2)是否有的把握认为愿意做志愿者工作与性别有关?