题目内容

【题目】已知0<x< ,sinx﹣cosx= ,存在a,b,c(a,b,c∈N*),使得(a﹣πb)tan2x﹣ctanx+(a﹣πb)=0,则2a+3b+c=(
A.50
B.70
C.110
D.120

【答案】B
【解析】解:将sinx﹣cosx= ,两边平方得:sin2x﹣2sinxcosx+cos2x= ,等式两边同时除以sin2x+cos2x,得: =
分子分母同时除以cos2x,得: =
化简整理得(16﹣π2)tan2x﹣32tanx+(16﹣π2)=0,
而存在a,b,c(a,b,c∈N*),使得(a﹣πb)tan2x﹣ctanx+(a﹣πb)=0,
∴a=16,b=2,c=32,
即2a+3b+c=32+6+32=70.
故选:B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网