题目内容
【题目】设函数()的图象为, 关于点的对称的图象为, 对应的函数为.
(Ⅰ)求函数的解析式,并确定其定义域;
(Ⅱ)若直线与只有一个交点,求的值,并求出交点的坐标.
【答案】(Ⅰ) ().(Ⅱ)见解析
【解析】试题分析:(1)设点P为原函数的图象上任意一点,点P关于点A的对称点为动点Q(x,y),点P满足原函数的方程,利用中点坐标公式联系P、Q两点的坐标关系,利用坐标相关法求对称曲线的方程,再求出定义域;(2)两曲线的交点问题,需要联立方程组,根据只有一个交点,只需判别式为0,求出b和交点坐标.
试题解析:
(Ⅰ)设是上任意一点,∴ ①
设关于对称的点为, ,解得,
代入①得,∴,
().
(Ⅱ)联立,,
或.
当时得交点;当时得交点.
练习册系列答案
相关题目
【题目】通过随机询问110名大学生是否爱好某项运动,得到列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由K2=,得K2=≈7.8.
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A. 有99%以上的把握认为“爱好该项运动与性别有关”
B. 有99%以上的把握认为“爱好该项运动与性别无关”
C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”