题目内容
20.已知函数f(x)=x2-2ax+5(a>1).(1)若函数f(x)的定义域和值域均为[1,a],求实数a的值;
(2)若f(x)在区间(-∞,2],上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.
分析 (1)确定函数的对称轴,从而可得函数的单调性,利用f(x)的定义域和值域均是[1,a],建立方程,即可求实数a的值.
(2)可以根据函数f(x)=x2-2ax+5=(x-a)2+5-a2.开口向上,对称轴为x=a,可以推出a的范围,利用函数的图象求出[1,a+1]上的最值问题,对任意的x∈[1,a+1],总有|f(x1)-f(x2)|≤4,从而求出实数a的取值范围.
解答 解:(1)∵函数f(x)=x2-2ax+5(a>1),∴f(x)开口向上,对称轴为x=a>1,…(2分)
∴f(x)在[1,a]是单调减函数,…(6分)
∴f(x)的最大值为f(1)=6-2a;f(x)的最小值为f(a)=5-a2…(10分)
∴6-2a=a,且5-a2=1
∴a=2…(14分)
(2)函数f(x)=x2-2ax+5=(x-a)2+5-a2.开口向上,对称轴为x=a,
∵f(x)在区间(-∞,2]上是减函数,对称轴大于等于2,
∴a≥2,a+1≥3,
f(x)在(1,a)上为减函数,在(a,a+1)上为增函数,
f(x)在x=a处取得最小值,f(x)min=f(a)=5-a2,
f(x)在x=1处取得最大值,f(x)max=f(1)=6-2a,
∴5-a2≤f(x)≤6-2a,
∵对任意的x∈[1,a+1],总有|f(x1)-f(x2)|≤4,
∴6-2a-(5-a2)≤4,解得:-1≤a≤3;
综上:2≤a≤3.
点评 本题考查二次函数的最值问题,考查函数的单调性,确定函数的单调性是关键,此题是一道函数的恒成立问题,第二问难度比较大,充分考查了函数的对称轴和二次函数的图象问题,是一道中档题.
练习册系列答案
相关题目
8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{3},0≤x<5}\\{f(x-5),x≥5}\end{array}\right.$,那么f(14)=( )
A. | 64 | B. | 27 | C. | 9 | D. | 1 |
15.沙坪坝凯瑞商都于2015年4月24日重新装修开业,某调查机构通过调查问卷的形式对900名顾客进行购物满意度调查,并随机抽取了其中30名顾客(女16名.男14名)的得分(满分50分),如表1:
表1
(Ⅰ)根据以上数据,估计这900名顾客中得分大于45分的人数;
(Ⅱ)现用计算器求得这30名顾客的平均得分为40.5分,若规定大于平均分为“满意”,
否则为“不满意”,请完成表2:
表2
(Ⅲ)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为顾客“性别”与“购物是否满意”有关?
参考公式和数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
表1
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(Ⅱ)现用计算器求得这30名顾客的平均得分为40.5分,若规定大于平均分为“满意”,
否则为“不满意”,请完成表2:
表2
“满意”的人数 | “不满意”的人数 | 合计 | |
女 | 16 | ||
男 | 14 | ||
合计 | 40 |
参考公式和数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |