题目内容

5.设函数f(x)=x2-ax+b,a,b∈R.
(1)已知f(x)在区间(-∞,1)上单调递增,求a的取值范围;
(2)存在实数a,使得当x∈[0,b]时,2≤f(x)≤6恒成立,求b的最大值及此时a的值.

分析 (1)利用对称轴和单调区间的关系,即可求a的取值范围;
(2)根据不等式恒成立,转化为求相应的最值即可

解答 解:(1)∵函数的对称轴为x=$\frac{a}{2}$,
∴要使f(x)在区间(-∞,1)上单调递增,则满足对称轴x=$\frac{a}{2}$≤1,即a≤2.
(2)∵当x∈[0,b]时,2≤f(x)≤6恒成立,
∴b>0,
①若a≤0,则$\frac{a}{2}$≤1,此时f(x)在[0,b]上单调递增,
∴$\left\{\begin{array}{l}{{f(x)}_{min}=f(0)≥2}\\{{f(x)}_{max}=f(b)≤6}\end{array}\right.$,即$\left\{\begin{array}{l}{b≥2}\\{{b}^{2}-ab+b≤6}\end{array}\right.$,
由b2-ab+b≤6得a≥b-$\frac{6}{b}$,
∴a=0,此时$\left\{\begin{array}{l}{b≥2}\\{{b}^{2}+b≤6}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=0}\\{b=2}\end{array}\right.$.
②若0<$\frac{a}{2}$<$\frac{b}{2}$,即0<a<b,此时:$\left\{\begin{array}{l}{{f(x)}_{min}=f(\frac{a}{2})≥2}\\{{f(x)}_{max}=f(b)≤6}\end{array}\right.$,
即$\left\{\begin{array}{l}{b-\frac{{a}^{2}}{4}≥≥2}\\{{b}^{2}-ab+b≤6}\end{array}\right.$,∴即$\left\{\begin{array}{l}{b≥2}\\{b-\frac{6}{b}+1<b}\end{array}\right.$,
∴2<b<6,
又b-$\frac{{a}^{2}}{4}$≥2,则a≤2$\sqrt{b-2}$,
∴b-$\frac{6}{b}$+1≤2$\sqrt{b-2}$,
令h(x)=x-$\frac{6}{x}$+1,g(x)=2$\sqrt{x-2}$,
∴h(2)=g(2)=0,h(3)=g(3)=2,且h(x)与g(x)均在(2,6)上单调递增,
当2<x<3时,h(x)的图象在g(x)图象的下方,即此时h(x)<g(x),
∴不等式b-$\frac{6}{b}$+1≤2$\sqrt{b-2}$的解为2<b≤3,
当b=3时,$\left\{\begin{array}{l}{3-\frac{{a}^{2}}{4}≥2}\\{9-3a+3≤6}\\{0<a<3}\end{array}\right.$,解得a=2
③若0<$\frac{a}{2}$=$\frac{b}{2}$,即0<a=b,此时$\left\{\begin{array}{l}{{f(x)}_{min}=f(\frac{a}{2})≥2}\\{{f(x)}_{max}=f(0)≤6}\end{array}\right.$,
即$\left\{\begin{array}{l}{b-\frac{{a}^{2}}{4}≥2}\\{b≤6}\\{0<a<3}\end{array}\right.$,此时不等式无解.
④若0<$\frac{b}{2}$<$\frac{a}{2}$<b,即0<b<a<2b,
此时$\left\{\begin{array}{l}{{f(x)}_{min}=f(\frac{a}{2})≥2}\\{{f(x)}_{max}=f(0)≤6}\end{array}\right.$,即$\left\{\begin{array}{l}{b-\frac{{a}^{2}}{4}≥2}\\{b≤6}\end{array}\right.$,
∴$\frac{{a}^{2}}{4}$+2<a,a2-4a+8<0此时不等式无解.
⑤若$\frac{a}{2}$≥b,即a≥2b,此时f(x)在[0,b]上单调递减,
∴$\left\{\begin{array}{l}{{f(x)}_{min}=f(b)≥2}\\{{f(x)}_{max}=f(0)≤6}\end{array}\right.$,即$\left\{\begin{array}{l}{{b}^{2}-ab+b≥2}\\{b≤6}\\{a≥2b}\end{array}\right.$,
∴2b≤b-$\frac{2}{b}$+1,
即b+$\frac{2}{b}$≤1,而当b>0时,b+$\frac{2}{b}$≥2$\sqrt{2}$>1,
∴此时不等式无解.
综上b的取值范围是[2,3],b的最大值是3,此时a=2.

点评 本题主要考查二次函数的图象和性质,综合性较强,运算量较大,难度不小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网