题目内容

11.设数列{an}是等差数列,数列{bn}是各项都为正数的等比数列,且a1=2,b1=3,a3+b5=56,a5+b3=26.
(1)求数列{an},{bn}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}{a}_{n+2}}$}的前n项和Tn

分析 (1)通过设数列{an}的公差为d,数列{bn}的公比为q(q>0),利用a3+b5=56,a5+b3=26,计算即得结论;
(2)通过an=3n-1及分离分母可得$\frac{1}{{a}_{n}{a}_{n+2}}$=$\frac{1}{6}$($\frac{1}{3n-1}$-$\frac{1}{3n+5}$),并项相加即得结论.

解答 解:(1)设数列{an}的公差为d,数列{bn}的公比为q(q>0),
∵a1=2,b1=3,
∴a3=2+2d,a5=2+4d,b3=3q2,b5=3q4
又∵a3+b5=56,a5+b3=26,
∴2+2d+3q4=56,2+4d+3q2=26,
解得:d=3,q=2,
∴an=2+3(n-1)=3n-1,bn=3•2n-1
(2)∵an=3n-1,
∴$\frac{1}{{a}_{n}{a}_{n+2}}$=$\frac{1}{(3n-1)(3n+5)}$=$\frac{1}{6}$($\frac{1}{3n-1}$-$\frac{1}{3n+5}$),
并项相加得:Tn=$\frac{1}{6}$($\frac{7}{10}$-$\frac{1}{3n+2}$-$\frac{1}{3n+5}$).

点评 本题考查求数列的通项及求和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网