ÌâÄ¿ÄÚÈÝ
19£®Èçͼ£¬¾ØÐÎABCDÖУ¬AB=2£¬BC=4£¬ÒÔ¾ØÐÎABCDµÄÖÐÐÄΪԵ㣬¹ý¾ØÐÎABCDµÄÖÐÐÄƽÐÐÓÚBCµÄÖ±ÏßΪxÖᣬ½¨Á¢Ö±½Ç×ø±êϵ£¬£¨1£©Çóµ½Ö±ÏßAD¡¢BCµÄ¾àÀëÖ®»ýΪ1µÄ¶¯µãPµÄ¹ì¼££»
£¨2£©Èô¶¯µãPµ½Ï߶ÎCDÖеãNµÄ¾àÀë±Èµ½Ö±ÏßABµÄ¾àÀë´ó4£¬Ç󶯵ãPµÄ¹ì¼£·½³Ì£¬×÷³ö¶¯µãPµÄ´óÖ¹켣£»
£¨3£©Èô¶¯µãPµ½Ö±ÏßAD¡¢BCµÄ¾àÀëÖ®»ýÊǵ½Ö±ÏßAB¡¢CDµÄ¾àÀëÖ®»ýµÄa£¨a£¾0£©±¶£¬Ç󶯵ãPµÄ¹ì¼£·½³Ì£¬²¢Ö¸³öÊÇÔõÑùµÄÇúÏߣ®
·ÖÎö £¨1£©ÉèP£¨x£¬y£©£¬Ôò|y-1|•|y+1|=1£¬»¯¼ò¼´¿ÉµÃµ½·½³ÌºÍ¹ì¼££»
£¨2£©ÉèP£¨x£¬y£©£¬ÓÉÌâÒâ¿ÉµÃ$\sqrt{£¨x-2£©^{2}+{y}^{2}}$=|x+2|+4£¬»¯¼òÕûÀí¼´¿ÉµÃµ½ËùÇ󷽳̺͹켣£»
£¨3£©ÉèP£¨x£¬y£©£¬Ôò|y-1|•|y+1|=a|x-2|•|x+2|£¬»¯¼òÕûÀí£¬¶ÔaÌÖÂÛ£¬µ±a=$\frac{1}{4}$ʱ£¬µ±a=1ʱ£¬µ±a$¡Ù\frac{1}{4}$ÇÒa¡Ù1ʱ£¬¼´¿ÉËùÇó¹ì¼£·½³ÌºÍ¹ì¼££®
½â´ð ½â£º£¨1£©Èçͼ£¬ÉèP£¨x£¬y£©£¬Ôò|y-1|•|y+1|=1£¬
»¯¼òµÃy=¡À$\sqrt{2}$»òy=0£®
¹Ê¶¯µãPµÄ¹ì¼£ÎªÈýÌõƽÐÐÏߣ»
£¨2£©ÉèP£¨x£¬y£©£¬ÓÉÌâÒâ¿ÉµÃ$\sqrt{£¨x-2£©^{2}+{y}^{2}}$=|x+2|+4£¬
¼´Îªy2=8£¨|x+2|+x+2£©£¬
¼´ÓÐy2=$\left\{\begin{array}{l}{0£¬x£¼-2}\\{16£¨x+2£©£¬x¡Ý-2}\end{array}\right.$£¬
×÷ͼÈçÓÒͼ£¬±íʾһÌõÅ×ÎïÏߺÍÒ»ÌõÉäÏߣ®
£¨3£©ÉèP£¨x£¬y£©£¬Ôò|y-1|•|y+1|=a|x-2|•|x+2|£¬
»¯¼òµÃ[£¨y2-1£©+a£¨x2-4£©]•[£¨y2-1£©-a£¨x2-4£©]=0£¬
¼´ax2-y2=4a-1»òax2+y2=4a+1£¨a£¾0£©£¬
¼´Óе±a=$\frac{1}{4}$ʱ£¬±íʾÁ½ÌõÏֱཻÏߺÍÍÖÔ²£»
µ±a=1ʱ£¬±íʾ˫ÇúÏߺÍÔ²£»
µ±a$¡Ù\frac{1}{4}$ÇÒa¡Ù1ʱ£¬±íʾ˫ÇúÏߺÍÍÖÔ²£®
µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬ÒÔ¼°·½³Ì±íʾµÄ¹ì¼££¬Í¬Ê±¿¼²éÖ±ÏߺÍÔ²¡¢ÍÖÔ²ºÍË«ÇúÏߵķ½³Ì£¬ÔËÓ÷ÖÀàÌÖÂÛµÄ˼Ïë·½·¨ÊǽâÌâµÄ¹Ø¼ü£¬
A£® | $\frac{8}{13}$ | B£® | $\frac{4}{3}$ | C£® | $\frac{4}{15}$ | D£® | $\frac{8}{15}$ |
A£® | $\frac{{\sqrt{5}}}{2}$ | B£® | $\frac{{\sqrt{15}}}{3}$ | C£® | $\frac{{\sqrt{10}}}{2}$ | D£® | $\sqrt{2}$ |