题目内容
11.设矩阵M=$(\begin{array}{l}{1}&{a}\\{b}&{1}\end{array})$.(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1;
(Ⅱ)若曲线C:x2+4xy+2y2=1在矩阵M的作用下变换成曲线C′:x2-2y2=1,求a+b的值.
分析 (I)通过M的行列式det(M)=-5,直接可得结论;
(II)设曲线C上任意一点P(x,y),变换后得到点P′(x′,y′),利用$[\begin{array}{l}{1}&{a}\\{b}&{1}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{x′}\\{y′}\end{array}]$,并将点P′(x′,y′)代入曲线C′,比较系数即得结论.
解答 解:(I)当a=2,b=3时,M的行列式det(M)=-5,
∴所求的逆矩阵M-1=$[\begin{array}{l}{-\frac{1}{5}}&{\frac{2}{5}}\\{\frac{3}{5}}&{-\frac{1}{5}}\end{array}]$;
(II)设曲线C上任意一点P(x,y),它在矩阵M所对应的线性变换作用下得到点P′(x′,y′),
则$[\begin{array}{l}{1}&{a}\\{b}&{1}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{x′}\\{y′}\end{array}]$,即$\left\{\begin{array}{l}{x+ay=x′}\\{bx+y=y′}\end{array}\right.$,
又点P′(x′,y′)在曲线C′上,
∴所以x′2-2y′2=1,则(x+ay)2-2(bx+y)2=1,
即(1-2b2)x2+(2a-4b)xy+(a2-2)y2=1为曲线C的方程,
又已知曲线C的方程为x2+4xy+2y2=1,
比较系数可得$\left\{\begin{array}{l}{1-2{b}^{2}=1}\\{2a-4b=4}\\{{a}^{2}-2=2}\end{array}\right.$,
解得:b=0,a=2,∴a+b=2.
点评 本题考查矩阵的变换等知识,考查运算求解能力,注意解题方法的积累,属于中档题.
A. | $\overrightarrow{BD}$=$\frac{7}{13}$$\overrightarrow{BC}$ | B. | $\overrightarrow{BD}$=$\frac{6}{13}$$\overrightarrow{BC}$ | C. | $\overrightarrow{BD}$=$\frac{13}{7}$$\overrightarrow{BC}$ | D. | $\overrightarrow{BD}$=$\frac{13}{6}$$\overrightarrow{BC}$ |
A. | 5 | B. | 4 | C. | 3 | D. | 2 |